skip to main content


Search for: All records

Creators/Authors contains: "Pirazzini, Roberta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.

     
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  2. This dataset contains spectral albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters, (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Spectral albedo data was collected using an Analytical Spectral Devices (ASD) FieldSpec Pro spectroradio meter with a custom spectralon cosine collector. Incident and reflected values were recorded subsequently, with 10 scans averaged for each.Processing of the data includes calculating an albedo from the relative values of incident and reflected scans, and completing quality control to (i) correct for parabolic offset between sensors, (ii) add flag quantifying variability of incident light that may be used to filter scans, (iii) remove scans with physically unrealistic values or slopes, and (iv) remove and filter noisy parts of the spectrum. This dataset is collocated with the broadband albedo dataset (doi.org/10.18739/A2KK94D36) and albedo photo dataset (doi.org/10.18739/A2B27PS3N). 
    more » « less
  3. This dataset contains the corresponding photos of the albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. The corresponding measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and broadband albedo dataset (doi.org/10.18739/A2KK94D36). 
    more » « less
  4. This dataset contains broadband albedo measurements made on the sea ice surface from approximately 1-meter (m) elevation during April – September 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Broadband albedo data was collected using a Kipp and Zonen albedometer. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and albedo photo dataset (doi.org/10.18739/A2B27PS3N). 
    more » « less
  5. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
    more » « less
  6. Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice. 
    more » « less